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ABSTRACT

Seasonality of sea surface temperature (SST) predictions in the tropical Indian Ocean (TIO) was in-

vestigated using hindcasts (1982–2009) made with the NCEP Climate Forecast System version 2 (CFSv2).

CFSv2 produced useful predictions of the TIO SST with lead times up to several months. A substantial

component of this skill was attributable to signals other than the Indian Ocean dipole (IOD). The prediction

skill of the IOD index, defined as the difference between the SST anomaly (SSTA) averaged over 108S–08,
908–1108E and 108S–108N, 508–708E, had strong seasonality, with high scores in the boreal autumn. In spite of

skill in predicting its two poles with longer leads, CFSv2 did not have skill significantly better than persistence

in predicting IOD. This was partly because the seasonal nature of IOD intrinsically limits its predictability.

The seasonality of the predictable patterns of the TIO SST was further explored by applying the maximum

signal-to-noise (MSN) empirical orthogonal function (EOF) method to the predicted SSTA in March and Oc-

tober, respectively. Themost predictable pattern in spring was the TIO basin warming, which is closely associated

with El Niño. The basin mode, including its associated atmospheric anomalies, can be predicted at least 9 months

ahead, even though some biases were evident. On the other hand, the most predictable pattern in fall was

characterized by the IOD mode. This mode and its associated atmospheric variations can be skillfully predicted

only 1–2 seasons ahead. Statistically, the predictable IODmode coexistswithElNiño; however, the 1994 event in a
non-ENSO year (at least not a canonical ENSO year) can also be predicted at least 3 months ahead by CFSv2.

1. Introduction

Dynamical prediction of seasonal atmospheric cli-

mate largely relies on the ability to predict slow varia-

tions of anomalous boundary forcing, including sea

surface temperature (SST) and land surface conditions

(e.g., Charney and Shukla 1981), even though there is

recent evidence showing that coupling processes can

produce additional predictable signals (e.g., Zhu and

Shukla 2013). Through their atmospheric teleconnec-

tion, SST variability in the tropical Pacific associated

with El Niño–Southern Oscillation (ENSO) is consid-

ered to be the primary source of seasonal climate pre-

dictability (e.g., Trenberth et al. 1998; Hoerling and

Kumar 2002). The ability of current dynamical models
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to predict ENSO has improved significantly since they

were first used in this way about three decades ago (Cane

et al. 1986). ENSO-related SST anomalies (SSTAs) in the

tropical Pacific can now be successfully predicted several

seasons ahead (e.g., Luo et al. 2005; Jin et al. 2008; Zhu

et al. 2012b, 2013a,b, 2015; Xue et al. 2013).

In addition to tropical Pacific SSTAs, the SST in the

other tropical basins can also stimulate weather and

climate variability over the globe. For example, the

precipitation over northeast Brazil (e.g., Hastenrath and

Heller 1977) and sub-Saharan Africa (e.g., Lamb 1978)

is associated with the meridional gradient of SST in the

tropical Atlantic. Of greater relevance to this study, SST

variations in the tropical Indian Ocean (TIO) are an

important source of seasonal climate variability in the

adjoining landmasses of eastern Africa (e.g., Clark et al.

2003), Asia (e.g., Guan and Yamagata 2003; Annamalai

et al. 2005; Yang et al. 2007), and Australia (e.g.,

Nicholls 1989; Cai et al. 2011). Thus, predictions of SST

evolution in the two tropical basins other than the Pa-

cific are also of importance. In the case of the tropical

Atlantic, however, current dynamical forecast systems

are not skillful in predicting SST variations even com-

pared with persistence (e.g., Stockdale et al. 2006; Hu

and Huang 2007). The lack of prediction skill not only

reflects the relatively lower predictability in the Atlan-

tic, but is also due to model biases (e.g., Huang et al.

2007) and the quality of ocean initial conditions (e.g.,

Zhu et al. 2012a).

On the other hand, there are studies reporting some

success in predicting low-frequency SST variations in

the TIO, even though the skill is lower than that for

ENSO. For example, Kug et al. (2004) developed a

simple linear regression model with Niño-3 SST as the

sole predictor, and yielded useful predictions of the

basin-mean SST up to 6 months in advance. There are

more studies of the prediction and predictability of the

Indian Ocean dipole mode (IOD; e.g., Wajsowicz 2005,

2007; Luo et al. 2007, 2008; Song et al. 2008; Zhao and

Hendon 2009; Shi et al. 2012). According to these

studies, coupled systems generally have higher skill over

the western pole of IOD than the eastern pole, with

skillful predictions of SSTA reported at lead times of

around 5–6 and 3–4 months, respectively. The lead time

for skillful prediction of the IOD events themselves,

even at their peak season (i.e., boreal autumn), is re-

ported to be only about one season, although some

strong individual IOD events are reported to be pre-

dictable at longer lead times (e.g., Luo et al. 2007, 2008;

Shi et al. 2012). Moreover, some studies suggest that an

IOD event may be more predictable if it occurs simul-

taneously with an El Niño (e.g., Song et al. 2008).

Most of the prediction and predictability studies dis-

cussed above are based on indices defined as SSTAs

averaged in certain regions of the TIO, which, however,

might not be adequate, especially when evaluating the

prediction skill of the IOD index, given the potential

effects of model bias. Furthermore, the strong season-

ality of the TIO interannual variability should also be

taken into account in evaluating the predictability of its

major modes of variability. For instance, the pattern

with opposite SSTA polarity in the eastern and western

equatorial Indian Ocean (Fig. 1b) appears mainly in the

boreal late summer and autumn. Therefore, one cannot

FIG. 1. The first EOF modes of observed SSTAs in (a) March (1983–2009) and (b) October (1982–2009). The

explained percentages of the respective total variances are indicated in each panel. The contour interval is 0.18C.
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rule out the possibility that the IOD index might only

be a statistical artifact (e.g., Baquero-Bernal et al. 2002)

during the other seasons.

A basinwide warming or cooling (Fig. 1a) is more

dominant in other seasons as another major TIO mode.

As a response to ENSO, the TIO gradually warms up

following an evolving El Niño event, reaching a maxi-

mum during spring (March–May) while expanding into

the northwestern Pacific about one season after Niño-3
SST has peaked (Nigam and Shen 1993; Klein et al. 1999;

Liu and Alexander 2007; Kumar et al. 2014). The for-

mation of this basinwide warm pattern involves several

potential mechanisms in response to ENSO. These in-

clude formation of a anticyclone over the Indian Ocean

basin starting from the beginning of ENSOdevelopment

(Klein et al. 1999; Lau and Nath 2003), the anomalous

anticyclone near the Philippines that is remotely forced

by the eastern equatorial Pacific SSTA in the ENSO

mature phase (e.g., Wang et al. 2000; Jiang et al. 2013),

and the thermocline deepening in the southwestern In-

dian Ocean during the same period (e.g., Huang and

Kinter 2002; Xie et al. 2002; Huang and Shukla 2007a).

These mechanisms provide the physical basis for the

predictability for the basin wide warming at multi-

seasonal lead times. However, whether current seasonal

forecast systems can reproduce these multiple processes

synchronously to realize such potential predictability

needs to be investigated. Therefore, it may be more

useful to treat the whole TIO as a prediction objective.

In this study, in addition to examining the overall pre-

diction skill similar to previous studies (Wajsowicz 2005,

2007; Luo et al. 2007, 2008; Song et al. 2008; Zhao and

Hendon 2009; Shi et al. 2012), we also investigate the most

predictable patterns by applying the maximum signal-to-

noise (MSN) empirical orthogonal function (EOF) method

to the predicted SSTA.Considering the seasonal features of

both the basin warming mode and the IOD, the seasonal

dependence of the predictable patterns is explored by ap-

plying the MSN EOF in different seasons. We examine

whether current prediction systems [e.g., the Climate

Forecast System, version 2 (CFSv2)] can capture the major

modes of theTIO, and, if so, howwell they canbepredicted.

This paper is organized as follows. Section 2 briefly

introduces the coupled climate prediction model (i.e.,

CFSv2), the hindcast datasets, and the analysis methods.

Section 3 examines the overall prediction skill and the

seasonal dependence of SSTAs on the TIO. Sections 4

and 5 respectively explore the most predictable modes

in SSTAs during March and October by applying the

MSN EOF method. The associations between these

patterns and the conditions in the TIO and the tropical

Pacific are also investigated. A summary and discussion

is given in section 6.

2. Data and analysis methods

The retrospective 9-month hindcasts analyzed in this

work are from the NCEP Climate Climate Forecast

System Reanalysis and Reforecast (CFSRR) Project

using CFSv2 (Saha et al. 2014), which includes pre-

dictions initialized in all calendar months from January

1982 to December 2009. The retrospective 9-month

forecasts have initial conditions (ICs) at 0000, 0600,

1200, and 1800 UTC on every 5th day, starting from

0000 UTC 1 January of every year, with oceanic and

atmospheric ICs from the NCEP Climate Forecast

System Reanalysis (CFSR; Saha et al. 2010). There are

292 forecasts for every year.

In CFSv2, the ocean component model is the GFDL

MOMversion 4, which is configured for the global ocean

with a horizontal grid of 0.58 3 0.58 poleward of 308S and
308N and meridional resolution increasing gradually to

0.258 between 108S and 108N. The vertical coordinate is

oceanic depth with 40 levels (27 in the upper 400m). The

maximum depth is approximately 4.5 km. The atmo-

spheric component model is the NCEP Global Forecast

System (GFS), which has horizontal resolution at T126

(105-km grid spacing spacing; reduced from the GFS

resolution for operational numerical weather pre-

diction) and 64 vertical levels in a hybrid sigma-pressure

coordinate. The oceanic and atmospheric components

exchange surface momentum, heat, and freshwater fluxes,

as well as SST, every 30min. CFSv2 became the NCEP

operational forecast system for seasonal-to-interannual

prediction in March 2011. It has been shown to have

good prediction skill in the tropical Pacific (Zhu et al.

2012b, 2014; Xue et al. 2013) and reasonable skill in

some extratropical oceans including the North Atlantic

(Hu et al. 2013), the North Pacific (Hu et al. 2014), and

the southern subtropical Pacific (Guan et al. 2014).

For this analysis, the ensemble mean predictions are

comprised of 24 forecasts, whose ICs are from dates prior

to the 7th of the ‘‘start month.’’ As an example, for an

ensemble monthly prediction with start month of Sep-

tember, the 24 ensemble members are the predictions

from ICs on 9, 14, 19, 24, and 29 August and on 3 Sep-

tember, and each date has ICs at 0000, 0600, 1200, and

1800 UTC. Thus, by definition, the starting month (or

lead month 0) of the prediction is an ensemble combi-

nation of predictions ranging over 25 days of ICs.

The prediction skill of CFSRR is first compared

against persistence forecasts of the observed monthly

mean SSTA. It should be pointed out that the definition

of lead time is slightly different for persistence and

CFSRR forecasts. Using September as an example of

start month, for a persistence forecast, the September

mean anomaly is assumed to remain unchanged through
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the full forecast period, and the September (October)

monthly mean is defined as a forecast at the zero- (one-)

month lead. This implies a perfect skill at the zero-month

lead for a persistence forecast. For CFSRR hindcast,

however, because of the inherent feature of the ensemble

generation method (i.e., lagged average), a September

forecast (i.e., a forecast at the zero-month lead) is com-

posed of forecasts beginning as early as 9 August.

Therefore, a comparison based on the nominal lead time

favors the persistence forecast, which includes more re-

cent information from the observations. In addition, our

analysis of forecast skill is based on monthly mean data,

and thus our estimates of predictive skill are probably

conservative in comparison with studies of skill assess-

ment of 3- or 5-month means.

In this study, the conventional empirical orthogonal

function (EOF) is used to derive the dominant modes of

SSTA in March and October in observations. The most

predictable patterns of SST are isolated by applying an

EOF analysis with maximized signal-to-noise ratio

(MSN EOF hereafter) to the predicted time series at

given lead times. The MSN EOF is a method to derive

patterns that optimize the signal-to-noise ratio from all

ensemble members. It was developed by Allen and

Smith (1997) and has been used widely, for example, by

Venzke et al. (1999), Sutton et al. (2000), Chang et al.

(2000), and Huang (2004) in extracting the dominant

MSN EOF patterns in ensemble GCM integrations; by

Hu and Huang (2007) in extracting the most predictable

patterns of the tropical Atlantic in ensemble hindcasts;

and by Zhu et al. (2012a) in extracting the common

subsurface signals of the tropical Atlantic in multiple

ocean analyses. The method assumes that in an ensem-

ble of moderate size, the ensemble mean is supposedly

composed of a signal and a nonnegligible random

component. In general, the former may be attributable

to the prescribed external boundary conditions or cou-

pling processes (Zhu and Shukla 2013), while the later

represents the unpredictable internal noise that is un-

correlated among ensemble members. Here, the signal

represents the consistency among different members of

the ensemble predictions because of the memory con-

tained in the ICs. The leading MSN EOF mode is the

one that maximizes ratio of the variance of the ensemble

mean to the deviations among the ensemble members.

In this work, we only analyze the leading MSN EOF

mode, which is defined as the most predictable pattern.

Details of this method are documented in Allen and

Smith (1997), Venzke et al. (1999), andHuang (2004). In

addition, a linear regression approach is also used to

extract the patterns associated with a predefined time

series or the time series associated with a specific spatial

mode. It should be noted that, since the observations

have only one realization and the CFSv2 predictions

include 24 ensemble members, the observation-related

regressions are expected to be weaker and less signifi-

cant because of the lower noise level. Correlations are

calculated to examine the consistency in time among

different datasets.

The observation-based monthly SST analysis for vali-

dation is from the Optimum Interpolation SST, version 2

(OISSTv2; Reynolds et al. 2002), which has a resolution of

1.08 3 1.08. Sea level pressure (SLP) and wind stress from

NCEP–U.S. Department of Energy (DOE) Atmospheric

Model Intercomparison Project phase 2 (AMIP-II) re-

analysis are taken as observations (Kanamitsu et al.

2002). Monthly precipitation from the National Oceanic

and Atmospheric Administration’s (NOAA) Climate

Prediction Center (CPC)MergedAnalysis of Precipitation

(CMAP) (Xie and Arkin 1997; available online at http://

ingrid.ldgo.columbia.edu/) is used as a proxy for rainfall

observations, which is on a 2.58 3 2.58 grid.

3. SST predictive skill in the tropical Indian Ocean

In this section, we analyze the SSTA predictive skill in

the tropical Indian Ocean during 1982–2009. The skill is

measured by the anomaly correlation and root-mean-

square error (RMSE) with respect to the OISSTv2

SSTA. The predictive skill is also compared with that

based on the corresponding persistence forecast. As one

of the foci in this study, the seasonality of predictive skill

is investigated as well.

In terms of SST systematic biases in the tropical In-

dian Ocean (figures not shown here, but available from

http://www.cpc.ncep.noaa.gov/products/people/mchen/

CFSv2HCST/metrics/climBias.html), CFSRRproduces a

general basinwide cold bias with the bias larger in the

western basin than in the eastern basin, but there is also a

subtle warm bias in the eastern basin in hindcasts starting

in boreal fall and winter. Such distributions result in a

cold bias in the climatological IOD SST index for all

hindcasts.

Figures 2 and 3 show the horizontal distributions of

SSTA prediction skill in the tropical Indian Ocean at

each lead month for the CFSRR and persistence pre-

dictions, respectively. As in othermodels (e.g., Luo et al.

2005), CFSv2 generally shows lower skill in the TIO than

in the tropical Pacific Ocean, but higher skill than in the

tropical Atlantic (figures not shown here; see Guan et al.

2014). As expected, the prediction skill of CFSRR de-

creases with increasing lead time in the TIO (Fig. 2).

Within the basin, at each lead time the model exhibits

the highest prediction skill in the southwestern TIO,

where ocean dynamics is vital in determining the SSTA

evolution, and ENSO plays an important role as a
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remote forcing (Huang and Kinter 2002; Xie et al. 2002).

In addition, the model also has some skill in the Arabian

Sea and the region extending from the Andaman Sea to

the central Indian Ocean. In these regions, the correla-

tion skill can reach 0.4 at the 8-month lead time.

In comparison with the CFSRR prediction, the per-

sistence prediction (Fig. 3) exhibits the highest skill in

the equatorial Indian Ocean, where the correlation skill

can be above 0.5 even at the 9-month lead time. It is

noticeable that this long-persistence region is dynami-

cally very active and is strongly influenced by the pre-

vailing semiannual Wyrtki jet (Wyrtki 1973), as well as

the ENSO-induced equatorial zonal wind anomalies. It

is also possibly related to the multidecadal SST warming

trend there (e.g., Luo et al. 2012). The skill in the same

region, however, is much lower inCFSRR.More curiously,

the CFSv2 prediction skill has a local minimum already

at lead-month 0 (Fig. 2a) while a local maximum is

maintained throughout all lead-months in persistence

(Fig. 3). These differences imply that there are model

deficiencies in representing related dynamical processes

and unrealized potential predictability in current models.

Except for this region, CFSRR generally has higher skill

than persistence.

A more quantitative measure of the prediction skill of

IOD, an important mode in the tropical IndianOcean, is

provided in Fig. 4, which shows the anomaly correlation

and RMSE between the observed and predicted IOD

indices and SSTA in its eastern and western poles (re-

ferred to as the EIO andWIO indices, respectively) as a

function of lead month, based on all predictions during

1982–2009. As discussed in section 2, it should be noted

FIG. 2. Correlations between observed and CFSv2 predicted SSTAs in the tropical Indian at 0–8-month lead times, based on all ICs during

January 1982–December 2009. The contour for 0.4 is highlighted.
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that the definition of lead time used herein favors the

persistence forecast, which may give a misleading im-

pression at short leads. For example, the persistence

prediction at the 0-month lead, by definition, has perfect

forecast skill (correlation 1 and RMSE 0), which always

beats the CFSRR forecast at the 0-month lead. With the

increase in lead times, the correlation (RMSE) generally

drops (increases) for all three indices in both CFSRR

and persistence forecasts. However, the prediction skill

of persistence diminishes faster, and CFSRR quickly

shows its supremacy at longer lead times. Taking the

prediction of EIO as an example (Figs. 4c,d), the cor-

relation (RMSE) skill in persistence drops (increases)

rapidly from 1.0 (0.08C) to less than 0.0 (;0.68C) by the

ninth lead month, while in CFSRR the correlation

(RMSE) skill drops (increases) more slowly from;0.87

(;0.308C) to;0.41 (;0.438C). TheWIO skill (Figs. 4a,b)

is generally better than for EIO. In the CFSRR forecast,

the correlation skill is well above 0.6 at 0–6-month lead

times and only slightly below 0.6 at 7–9-month lead times.

If a skillful prediction is defined as one having correlation

higher than 0.6, CFSv2 can provide skillful predictions

for the WIO index 2–3 seasons ahead, but for EIO only

;1 season can be achieved.

The better prediction skill in WIO than EIO is also

evident in the RMSE measure and in the comparison

to the persistence forecast as well. What is more in-

teresting, even though the prediction skill of WIO and

EIO looks useful, the IOD index itself (Figs. 4e,f) has

much lower prediction skill, with skillful prediction

FIG. 3. Correlations between observed and persistence predicted SSTAs in the tropical Indian at 1–9-month lead times, based on all ICs

during January 1982–December 2009. The contour for 0.4 is highlighted.
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available less than one season ahead. This paradox is a

result of strong seasonality in the TIO variability. Specifi-

cally, IOD events take place during June–November,

whereas the basin-scale warming following an El Niño
event dominates during the rest of the year (Schott et al.

2009). As discussed below (Fig. 5), the relatively high skill

for theWIO andEIO indices (Figs. 4a–d) ismainly related

to the basin-scale warming mode, not the IOD mode.

Figure 5 explores the seasonality of the above pre-

diction skill in both persistence and CFSRR forecasts,

by showing the correlation skill of the three indices as

functions of both IC month and lead time. A striking

feature of Fig. 5 is that the prediction skill of the IOD

index (Figs. 5e,f) strongly depends on season, both for

persistence and CFSRR forecasts. Specifically, both

forecasts generally show high prediction skill during the

boreal autumn (especially the late autumn), but have

low skill during other seasons, exhibiting a similar fea-

ture to the known boreal winter–spring predictability

barrier (Wajsowicz 2005, 2007; Luo et al. 2007; Feng

et al. 2014). Specifically, there are two prediction bar-

riers: one is in December associated with the seasonal

phase locking of IOD onto monsoonal winds; the other

is in boreal spring associated with the influence of

ENSO. As a result, the skillful predictions with the

longest lead month are those initiated in summer (June–

July) in both CFSRR and persistence forecasts. This

feature is consistent with the seasonality attribute of

IOD events, which develop in June and peak in October

(Saji et al. 1999). It is interesting to note that the CFSRR

apparently outperforms persistence in these long-lead

predictions initiated in early summer.

For the WIO and EIO indices, the prediction skill in

CFSRR (Figs. 5b,d) has aweak but discernible seasonality,

FIG. 4. (top) Anomaly correlation coefficients and (bottom) RMS errors (8C) of persistence (green lines) and CFSRR forecast (red

lines) as a function of lead months for (a),(b) SST anomalies in the western pole of the Indian Ocean (WIO; 108S–108N, 508–708E),
(c),(d) SST anomalies in the eastern pole of the Indian Ocean (EIO; 108S–08, 908–1108E), and (e),(f) the IOD index, based on all pre-

dictions during 1982–2009.
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which also looks somewhat different from that for IOD

(Fig. 5f). In fact, CFSRR features low skill during boreal

summer for both poles (Figs. 5b,d) and around De-

cember for EIO (Fig. 5d). The WIO also suffers from a

diminution of skill in November but shows high skill in

September–October and December–April (Fig. 5b).

Themost predictable target months for EIO areMarch–

April and, to a lesser extent, September–October. These

characteristics show that the relatively high prediction

skill inWIO andEIO (Fig. 4) can bemostly attributed to

seasons other than the IOD peak season, although the

highest IOD skill in September–October (Fig. 5f) cor-

responds to relatively high skill in both poles (Figs. 5b,d)

and likely reflects the genuine tendency for the two

poles to be out of phase.On the other hand, the high skill

in both poles in March does not yield a corresponding

high in IOD skill with leads over two months, possibly

because the skillfully predicted SSTA is largely in phase

between the east and west. The same reason can also be

used to explain why the IOD skill (Fig. 5e) is lower than

that of both poles from January to April (Figs. 5a,c) in

persistence. In general, Fig. 5 suggests that the boreal

spring prediction barrier for forecasts of the IOD index

is caused by the spring barrier for both WIO and EIO

SSTA, whereas the December prediction barrier for

forecasts of the IOD index is mainly due to the De-

cember barrier for EIO SSTA.

CFSRR forecasts are superior to persistence in all

three indices, demonstrating additional predictability

that is realized by the dynamical forecast system. This is

partly because a much weaker seasonality is present for

the two poles in persistence, which is hard to recognize

in theWIO prediction (Fig. 5a) and only subtly apparent

in the EIO (Fig. 5c). On the other hand, the SSTA in

November in WIO seems to last longest through per-

sistence (Fig. 5a), a feature shared by its CFSRR

FIG. 5. Prediction skills (anomaly correlation coefficients) as functions of IC months (y axis) and lead months (x axis) for (a),(b) SST

anomalies in theWIO (108S–108N, 508–708E), (c),(d) SST anomalies in the EIO (108S–08, 908–1108E), and (e),(f) the IOD index, based on

all predictions during 1982–2009, for (top) persistence and (bottom) CFSRR forecast.
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counterpart (Fig. 5b). The sharp decay of persistence in

November–December (Fig. 5c) in EIO is also shared by

the CFSRR (Fig. 5d), which reflects the fast decay of

IOD or its quick replacement by the all-basin mode in

ENSO years (Huang and Kinter 2002). The model,

however, seems to face a stronger spring barrier, espe-

cially for WIO.

To further highlight the skill contrast during the IOD

season and the season of the basinwide warming mode,

Fig. 6 compares the prediction skill of CFSRR and

persistence forecasts for all three indices (i.e., WIO,

EIO, and IOD) during October with those during

March. For WIO, for the anomaly correlation measure

(red curves in Fig. 6a), CFSRR clearly has higher skill

when predicting March compared to when it is predict-

ing October, with skillful predictions available more

than three seasons (less than two seasons) ahead for the

former (the latter). The better prediction ofWIO during

March compared to October is also shown in persistence

at lead times of less than 7 months (green curves in

Fig. 6a), and a similar difference is foundwith theRMSE

measure (Fig. 6b). Unlike those for WIO, the EIO

predictions in CFSRR (red curves in Fig. 6c) do not have

consistent differences at all lead times between the two

target months, with October (March) forecasts having

higher skill at lead times of less (greater) than 5 months

for the anomaly correlation measure. For persistence

(green curves in Fig. 6c), however, EIO has significantly

higher correlation skill for October than March, which

may also be true in the RMSE measure (green curves in

Fig. 6d). In summary, according to a bulk measure de-

fined as the average anomaly correlation (RMSE) over

all 0–9-month leads (Zhu et al. 2012b), in CFSRR the

WIO index is generally better predicted for March than

FIG. 6. Predictive skill in target month of October (solid lines) and March (dashed lines). (top) Anomaly correlation coefficients and

(bottom) RMS errors (8C) of persistence (green lines) and CFSRR forecast (red lines) as a function of lead months for (a),(b) SST

anomalies in theWIO (108S–108N, 508–708E), (c),(d) SST anomalies in the EIO (108S–08, 908–1108E), and (e),(f) the IOD index. October

(March) skill is based on all predictions during 1982–2009 (1983–2009).
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October, but EIO has similar prediction skill for the two

target months.

Predictions of IOD index, however, clearly exhibit a

different seasonality behavior from the two poles. For

the anomaly correlationmeasure (Fig. 6e), both CFSRR

and persistence have higher skill for October compared

to March at most lead times (CFSRR can provide

skillful predictions longer than one season for the IOD

index in October). This feature is again related to the

strong seasonality of IOD. In particular, WIO and EIO

during October tend to have opposite phases, and the

physical basis for the IOD (Saji et al. 1999;Webster et al.

1999) provides potential predictability on the seasonal

time scale. In contrast, because of the dominance of the

basinwide warming mode during March, WIO and EIO

tend to have the same sign and the resulting IOD has

relatively low predictability. In practice, however, even

for IOD events during October, the present models

(e.g., CFSv2) only achieve modest successes in pre-

dicting them. For example, according to both anom-

aly correlation and RMSE measures (solid curves in

Figs. 6e,f), CFSRRonly slightly outperforms persistence

at lead times of shorter than 5 months, even though

there seems to be a slight rebound of skill at 8–9-month

lead times.

In summary, the above analyses indicate that CFSRR

has useful skill predicting the TIO SST, but most of the

skill is generally attributable to skill in seasons other

than the IOD season. For predictions of the IOD index,

there exists a strong seasonality in its prediction skill,

with relatively high skill in the boreal autumn. In the

following two sections, we further explore the season-

ality of the predictability of the TIO SST. In particular,

the SST for the whole tropical Indian basin will be

treated as single prediction object, and the most pre-

dictable pattern will be explored for March and Octo-

ber, respectively.

4. The most predictable SST pattern related to the
TIO basinwide warming mode

In this section, the most predictable SST pattern is

extracted by applyingMSNEOF in the predictedMarch

SSTs at different lead times. As we discussed in section

1, a benefit of the MSN EOF is to determine the most

predictable mode in an ensemble of hindcasts objec-

tively and to delineate its spatial pattern naturally

without reliance on a priori definitions of the indices.

The MSN EOF is obtained based on the forecast en-

semble mean and spread. Each member in an ensemble

prediction is treated as equally probable in the MSN

EOF calculation, which means that there is no consid-

eration given to the possibility that some members may

be better predictions than others. After an MSN EOF

mode is determined, its connections with the ocean–

atmosphere conditions in the TIO and the tropical Pa-

cific can be obtained for the preceding winter and the

contemporary spring by regressing key atmospheric and

oceanic fields against the time series associated with the

most predictable SST pattern. It should be noted that

calculations based on other spring months (i.e., April

and May) show quite robust results (figures not shown).

Figure 7 shows the first mode of MSN EOF (MSN

EOF1) of theMarch SSTA in the TIO for (a) March ICs

(0-month lead), (b) December ICs (3-month lead),

(c) September ICs (6-month lead), and (d) June ICs

(9-month lead). The percentages of variance of the en-

semble mean SSTA explained by these MSN EOF1

modes are 46.2%, 66.2%, 72.2%, and 75.4% at the four

lead times, respectively. There are obvious similarities

among the leading patterns for different leads (right

panel of Fig. 7), all having a basinwide warming (cool-

ing) in the TIO. The spatial pattern resembles the

leading mode of observed SSTA in March (Fig. 1a),

even though the loading details are slightly displaced at

long lead times. Furthermore, the time series associated

with the first MSN EOF modes are also consistent with

the one corresponding to EOF1 of observed SSTA in

March, with correlations ranging from 0.65 to 0.89 (all

above the 95% confidence level). In addition, as seen

from the corresponding time series (left panel of Fig. 7),

in both observations and hindcasts there is also a long-

term warming trend overlaid on the interannual varia-

tion during the hindcast period (i.e., 1982–2009), which

seems slightly stronger in hindcasts at long lead times

than that at 0-month lead time and in observations. This

consistency indicates that the observed TIO warming

trend, probably attributable to both external forcing and

internal variability (Ihara et al. 2008; Du and Xie 2008;

Dong et al. 2014), is also reproduced in the CFSv2

hindcasts. Its appearance in hindcasts is at least par-

tially due to the application of historically prescribed

(i.e., rising) CO2 concentrations during the hindcast

process (Saha et al. 2014), and probably also associated

with the initial conditions. The SST warming trend is

relatively well predicted at a lead time of 9 months, but

it could be underestimated at longer lead times (e.g.,

Luo et al. 2011).

Figures 8 and 9 present the anomalous fields of SST,

wind stress, and precipitation in the tropical Indian and

Pacific Oceans associated with the above MSN EOF1

(Fig. 7) during the preceding winter (e.g., December),

corresponding to the peak season of El Niño. The re-

gression patterns for the CFSv2-predicted fields (right

column in Figs. 8 and 9) are similar among the four lead

times (i.e., 0-, 3-, 6-, and 9-month leads), and they all

15 OCTOBER 2015 ZHU ET AL . 7971



FIG. 7. (left) The normalized time series (color shading) and (right) spatial patterns ofMSNEOF1 of the predicted

March SSTAs during 1983–2009 at (a) 0-month lead with the March IC, (b) 3-month lead with the preceding De-

cember IC, (c) 6-month lead with the preceding September IC, and (d) 9-month lead with the preceding June IC. The

contour interval is 0.18C. The percentage of the explained variance for the ensemble mean anomalies is indicated in

each panel. Overlaid in the shading time series is the normalized time series (gray lines) corresponding to EOF1 of

observed March SSTA (i.e., Fig. 1a).
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approximately reproduce those for the observed fields

(left column in Figs. 8 and 9), which suggests that the

variations associated with MSN EOF1 can be predicted

at least 9months ahead.Also, the regressions are stronger

and more significant for the CFSv2-predicted fields (right

column in Figs. 8 and 9) than those for the observed fields

(left column in Figs. 8 and 9), which might be due to a

lower noise level in the former as a result of ensemble

averaging.

In the tropical Pacific, in particular, the associated

preceding winter patterns in both observations and

CFSv2 hindcasts represent a clear El Niño state, which is
consistent with previous results that the basin warming

mode is induced by El Niño in the tropical Pacific

(Nigam and Shen 1993; Klein et al. 1999; Huang and

Shukla 2007a; Liu and Alexander 2007; Schott et al.

2009; Kumar et al. 2014). Specifically, the spatial pattern

consists of positive SSTAs in the central and eastern

tropical Pacific (contours in Fig. 8), anomalous west-

erlies in the western and central equatorial Pacific ac-

companied by strongmeridional wind convergence from

both hemispheres (vectors in Fig. 8), and eastward mi-

gration of tropical convection (Fig. 9). Over the tropical

northwest Pacific, an anomalous anticyclonic circulation

is also evident in all regressions, which is a robust feature

associated with El Niño, and through this circulation

ENSO exerts influences on the East Asian climate (e.g.,

Zhang et al. 1996; Wang et al. 2000). On the other hand,

there are some subtle differences between the regressions

for observations and for hindcasts. For example, as the

lead time increases in hindcasts, themeridional extent of

SSTAs becomes larger in the eastern tropical Pacific

(right column in Fig. 8) and the associated precipitation

becomes more symmetric about the equator in the

central tropical Pacific (right column in Fig. 9). These

differences are related to the CFSv2 biases in represent-

ing ENSO and its related atmospheric teleconnections in

the tropics, which is confirmed by regressions against the

Niño-3.4 index (not shown). The unrealistic symmetric

precipitation distribution is likely associated with the

double-ITCZ problem in the mean state of CFSv2

(not shown).

FIG. 8. The regression maps of the (left) observed and (right) predicted anomalous SST (contours, 8C) and wind

stress (vectors, Nm22) in the preceding December onto the MSE EOF1 time series of predicted March SSTAs at

(a) 0-month lead with the March IC (Fig. 7a), (b) 3-month lead with the preceding December IC (Fig. 7b), (c)

6-month lead with the preceding September IC (Fig. 7c), and (d) 9-month lead with the preceding June IC (Fig. 7d).

The contour interval for SST is 0.28C, and the shading is for SST regressions above 95% significance test. Wind stress

vectors are shown only if either meridional or zonal wind stress is above 95% significance test.
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In the TIO, the associated positive SSTA is not evenly

distributed around the basin in the preceding winter, as

indicated by the regressions for both observations and

hindcasts (Fig. 8). Specifically, the northern tropical

Indian Ocean generally experiences a uniform warming,

which is due to the thermodynamic forcing from El

Niño, as a result of reduced cloud cover, for example

(e.g., Klein et al. 1999; Chen et al. 2012). The warm

SSTA in the central subtropical south Indian Ocean

between 158 and 308S, most prominently in observations

(left panels, Fig. 8), is apparently associated with the

reduced strength of the southeast trade winds there.

On the other hand, the zonal SSTA contrast is more

evident in the southern equatorial Indian Ocean in

hindcast regressions, with larger SSTA in the south-

western ocean near Madagascar (right panels, Fig. 8).

The zonal difference can be attributed to the persistent

effect of the IOD response to El Niño in the region. As

will be discussed in the next section, the subsurface

temperature anomalies generated in the southeastern

equatorial Indian Ocean during the IOD peaks propa-

gate westward and deepen the mean thermocline ridge

located in the southwestern Indian Ocean a few months

later (e.g., Xie et al. 2002; Huang and Kinter 2002;

Huang and Shukla 2007a). Arriving at the western

coast in the winter, they contribute to warmer SSTAs

in the southwestern Indian Ocean (Fig. 8; Xie et al.

2002; Huang and Kinter 2002). These signals seem to

the southwestern region earlier in the model than in

observations.

Figures 10 and 11 present the anomalous fields of SST,

wind stress, and precipitation in the tropical Indian and

Pacific Oceans associated with the above MSN EOF1

(Fig. 7) during the simultaneous spring (e.g., March),

corresponding to the decaying season of El Niño. Like
those for the antecedent winter (right column in Figs. 8

and 9), the regression patterns for the CFSv2-predicted

fields look generally similar. The statistically significant

features in both observations and CFSRR are the rem-

nants of ENSO anomalies in the tropical Pacific and the

basinwide warming in the Indian Ocean, extending to

the western Pacific around the coast of East Asia. The

regressions, especially for precipitation, are generally

less significant for the observed fields (left column in

FIG. 9. The regressionmaps of the (left) observed and (right) anomalous precipitation (contours, mmday21) in the

precedingDecember onto theMSEEOF1 time series of predictedMarch SSTAs at (a) 0-month lead with theMarch

IC (Fig. 7a), (b) 3-month lead with the preceding December IC (Fig. 7b), (c) 6-month lead with the preceding

September IC (Fig. 7c), and (d) 9-month lead with the preceding June IC (Fig. 7d). The contour interval is

1 mmday21, and the shading is for precipitation regressions above 90% significance test.
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Figs. 10 and 11), partially due to a higher noise level

since the observations represent only one realization.

Compared with the preceding winter (Fig. 8), in both

observation- and hindcast-related regressions, the posi-

tive SSTAs become generally stronger (and more sig-

nificant) in the TIO as evidenced by a larger area within

the 0.28C contour, but weaker in the tropical Pacific. In

particular, warm signals reach the southwestern Indian

Ocean in observations. However, the zonal SSTA dif-

ference in the southern equatorial Indian Ocean be-

comes less evident. According to previous studies

(Annamalai et al. 2005; Yang et al. 2007; Xie et al. 2009),

different SSTA evolutions in the TIO and tropical Pa-

cific could act to persist the El Niño influences by way

of a so-called capacitor effect. That is, the TIO warms in

response to El Niño (the charging process), and this

warming then influences precipitation in the TIO and

surrounding regions after El Niño decays (the discharge

process).

In addition, in the tropical Pacific, the decrease of

SSTAs from the preceding winter (Fig. 8) to the simul-

taneous spring (Fig. 10) is more significant in the ob-

served regressions than for the hindcast regressions. This

implies a bias in the CFSv2 (i.e., its simulated ENSO per-

sists too long).Also, the anomalous anticyclonic circulation

is still evident in the hindcast regressions, especially at 3-,

6- and 9-leadmonths (right columns of Figs. 10b–d), but it

is only subtly present in the observed regressions (left

columns of Fig. 10). The difference, once again, is a result

of the persistence of ENSO events being different in

observations and CFSv2. The bias implies that in CFSv2

the connection between ENSO and the East Asian cli-

mate may be unrealistically strong.

In summary, in spring the most predictable SSTA pat-

tern in CFSRRhindcasts is characterized by the TIObasin

warming. The predictable mode is closely associated with

El Niño in the tropical Pacific. The mode in spring can be

predicted at least 9 months ahead. Its associated variations

in the preceding winter and the simultaneous spring are

also generally captured byCFSv2 ninemonths ahead, even

though some biases are evident.

5. The most predictable pattern related to IOD

In this section, the most predictable SST pattern re-

lated to the IOD is extracted by applying the MSN EOF

method to the predicted SSTs in October at different

lead times, as done above for the basin warming mode.

The October SSTA corresponds to the IOD mature

phase.

FIG. 10. As in Fig. 8, but for the anomalous SST and wind stress in March.
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Figure 12 shows the first mode of MSN EOF (MSN

EOF1) of the October SSTA in the TIO for (a) October

ICs at a 0-month lead, (b) July ICs at a 3-month lead,

(c) April ICs at a 6-month lead, and (d) January ICs at a

9-month lead. The percentages of variance of the en-

semble mean SSTA explained by these MSN EOF1

modes are 28.6%, 31.8%, 54.3%, and 25.7% at the four

lead times, respectively. There are obvious similarities

between the leading patterns derived from the 0- and

3-month lead times (right panel of Figs. 12a,b), which

both resemble the leading mode of the observed SSTA

in October (Fig. 1b), demonstrating a west–east contrast

of SSTAs in the TIO. Also, the time series associated

with theMSFEOF1 patterns at 0- and 3-month leads are

fairly similar with PC1 of the observed SSTA inOctober

(left panel of Figs. 12a,b), with correlations of 0.81 and

0.66, respectively (both above the 95% confidence

level). In addition, the major IOD events, including

1994, 1997, and 2006, were well predicted by CFSv2 at

least 3 months ahead.

In contrast to short lead prediction, the prediction

skill becomes significantly lower at 6- and 9-month leads

(Figs. 12c,d). First, the leading patterns at these lead

times start to deviate substantially from the leading

mode of the observed SSTA in October (right panel of

Figs. 12c,d). In particular, the negative SSTA in the

eastern pole become very weak, such that it is hard to

recognize at 9-month lead time. Also, there is a clear

decline in the consistency between the time series as-

sociated with MSN EOF1 and PC1 of the observed

SSTA in October (left panel of Figs. 12c,d). The corre-

lation decreases to 0.42 at 6-month lead time and 0.23 at

9-month lead time. In fact, as seen from the associated

time series, the major event of 1994 is completely missed

by the predictions at both 6- and 9-month lead times.

Also, for predictions at the two lead times, the observed

SSTA leading pattern in October (Fig. 1b) seems to be

better captured by the second MSN EOF mode (not

shown), but their associated time series clearly deviate

from PC1 of the observed SSTA in October (correla-

tions equal 0.31 and 0.09, respectively).

Figures 13 and 14 show the anomalous fields of SST,

wind stress, and precipitation in the tropical Indian and

Pacific Oceans associated with the above MSN EOF1

(Fig. 12) during the simultaneous October, which also

corresponds to the developing season of El Niño. Be-
cause the most predictable mode is not realistically

predicted at 6- and 9-month lead times (Fig. 12), the

following discussions focus on those at 0- and 3-month

lead times. Similar to the basin warming mode, at first

FIG. 11. As in Fig. 9, but for the anomalous precipitation in March.
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FIG. 12. (left) The normalized time series (color shading) and (right) spatial patterns of MSN EOF1 of the

predicted October SSTAs during 1982–2009 at (a) 0-month lead with the October IC, (b) 3-month lead with the

July IC, (c) 6-month lead with theApril IC, and (d) 9-month lead with the January IC. The contour interval is 0.18C.
The percentage of the explained variance for the ensemble mean anomalies is indicated in each panel. Overlaid in

the shading time series is the normalized time series (gray lines) corresponding to EOF1 of observed October

SSTA (i.e., Fig. 1b).
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two short lead times the regressions for hindcasts bear a

good resemblance to their counterparts in observations,

but the former are generally more significant than the

latter, which is again due to the fact that there is only one

realization in observations but an ensemble of re-

alizations in hindcasts.

In the tropical Pacific, the associated patterns in both

observations and hindcasts are again characterized by an

El Niño state. However, there are distinct differences

between the winds associated with the basin warming

mode (Figs. 8 and 10) and those associated with IOD

(Fig. 13). In the former, the strong meridional wind

convergence from both hemispheres is evident along

most longitudes near the equator (Figs. 8 and 10). In

contrast, the surface winds associated with IOD (Fig. 13)

display larger anomalous westerlies in the western and

central equatorial Pacific, but clearly much weaker

meridional wind convergence. The difference is due to

the different phase relationships with ENSO, with the

former (latter) corresponding to the peak and decay

(developing) phase of ENSO. The associated winds for

the latter act as an active dynamic driver for the tropical

Pacific, while in the former they are a response to the

ENSO-related SSTA. In addition, the equatorial east-

erly wind anomalies in the central and eastern Indian

Ocean are accompanied by weaker southeast trade winds

in central south Indian Ocean. As a result, an anomalous

anticyclonic wind curl is established to the south of the

equator, which forces significant thermocline deepening

in the central part of the southern Indian Ocean around

108S and generates the subsequent effects discussed in

last section.

In the TIO, there are distinct spatial characteristics

associated with the IOD. In particular, greater-than-

average SST (Fig. 13) and greater precipitation (Fig. 14)

appear in the western Indian Ocean region, but the

eastern Indian Ocean features by surface cooling

(Fig. 13) and a precipitation deficit (Fig. 14). The west-

ern and eastern poles are bridged by the anomalous

easterlies near the equator (Fig. 13). The pattern can be

FIG. 13. The regression maps of the (left) observed and (right) predicted anomalous SST (contours, 8C) and wind

stress (vectors, Nm22) in October onto the MSE EOF1 time series of predicted October SSTAs at (a) 0-month lead

with the October IC (Fig. 12a), (b) 3-month lead with the July IC (Fig. 12b), (c) 6-month lead with the April IC

(Fig. 12c), and (d) 9-month lead with the January IC (Fig. 12d). The contour interval for SST is 0.28C, and the shading
is for SST regressions above 95% significance test. Wind stress vectors are shown only if either meridional or zonal

wind stress is above 95% significance test.
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triggered by anomalous equatorial easterly anomalies

and southeasterlies off Sumatra (not shown; Xie et al.

2002; Huang and Kinter 2002), which induce the coastal

and equatorial upwelling around the Sumatra coast,

cooling the SST locally. The westward shift of tropical

convection fuels the anomalous easterly winds near the

equator, consistent with the Bjerknes positive feedback

(e.g., Saji et al. 1999).

The coincident appearance of ENSO and IOD

suggests a mutual relationship between them, which

could be connected by the precipitation deficit extend-

ing from the eastern IndianOcean through theMaritime

Continent to the western Pacific (Figs. 14a,b). In par-

ticular, IODs can be triggered by El Niño. During the El

Niño state, tropical convection migrates eastward to the

central Pacific, which results in negative precipitation

anomalies in the regions from the eastern Indian Ocean

to the western Pacific. The precipitation deficit, in turn,

favors easterlies over the equatorial Indian Ocean

(Figs. 13a,b), which can trigger a positive IOD. The

causal relationship can actually be confirmed by the fact

that the present regression patterns (Figs. 13 and 14) are

similar to the ones calculated against the Niño-3.4 index
in fall (figures not shown). On the other hand, El Niño
may also be affected by an IOD in the Indian Ocean

(Luo et al. 2010; Izumo et al. 2010). An IOD event can

have a significant influence on the ascending branch of

the Walker circulation, due to its related variations in

SST and precipitation. Specifically, the precipitation

deficit in the eastern Indian Ocean (Figs. 14a,b) related

to a positive IOD could force equatorial Pacific westerly

anomalies in fall (Figs. 13a,b), which could potentially

affect the evolution of an ENSO event. However, be-

cause of the strong seasonality of ENSO, the influence

may be limited, since the winds appear too late to play a

major role in initiating an ENSO event.

Even thoughENSOand IOD statistically tend to appear

simultaneously, not all IODevents co-occurwithENSO.A

good example is 1994, when there was a strong IOD event

but only a very weak warm pool El Niño. The major 1997

IOD event, in contrast, happened with the strong El

Niño state in the Pacific Ocean. Regarding the two

major IODevents, somemodels predict both at 3-month

lead (Wajsowicz 2005), while some models predict the

FIG. 14. The regression maps of the (left) observed and (right) anomalous precipitation (contours, mmday21) in

October onto the MSE EOF1 time series of predicted October SSTAs at (a) 0-month lead with the October IC

(Fig. 12a), (b) 3-month lead with the July IC (Fig. 12b), (c) 6-month lead with theApril IC (Fig. 12c), and (d) 9-month

lead with the January IC (Fig. 12d). The contour interval is 1mmday21, and the shading is for precipitation re-

gressions above 90% significance test.
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1994 event well but the 1997 event not as well (Luo et al.

2007). Here, we examine the predictions by CFSv2.

Figures 15 and 16 respectively present the predictions of

the two IOD events, both starting from July initial

conditions. By evaluating their peak phase (e.g., Octo-

ber; lower two rows in Figs. 15 and 16), both events

seems to be well predicted starting from as early as July

(i.e., at a 3-month lead time), but with slightly weaker

amplitudes.

We first look at the prediction of the 1994 event in

detail. In August (upper two rows in Fig. 15), both ob-

servation and CFSv2 have insignificant signals in the

tropical Pacific, withminor negative SSTAs in the eastern

Pacific and minor positive SSTAs in the western and

central Pacific. In observations, there are strong anticy-

clonic circulations in the southern subtropics, which,

however, are absent inCFSv2. The inconsistency suggests

that the anticyclones were not vital for the development

of the 1994 IOD that was still well predicted by CFSv2.

By contrast, a widespread cyclonic circulation is

present in the northwestern Pacific in both observations

and CFSv2, accompanied by positive precipitation

anomalies around the same region. According to pre-

vious studies (e.g., Huang and Shukla 2007b), in the

absence of ENSO, the anomalous events in the TIO

could be triggered by the anomalous cyclone over the

tropical northwestern Pacific. In particular, for the

latter a regional direct thermal cell could cause sub-

sidence over the southeastern Indian Ocean. This in-

deed seems to happen in both observations and CFSv2

as evidenced by an anomalous anticyclonic circulation

pattern over the same region. The above meridional

structure is more significant in CFSv2, but is slightly

distorted in observations probably due to the exis-

tence of strong anticyclonic circulations in the south-

ern subtropics. The direct thermal cell, in turn,

enhances the southeast trade winds over the south-

eastern equatorial Indian Ocean, which initiates the

IOD development.

Once initiated, the IOD further develop as results

of Bjerknes feedback. In August, there is clearly

negative SSTA in the easternTIO, but it is ill organized in

FIG. 15. The 1994 IOD evolution in (left) observations and (right) predictions starting from July 1994. (top)

Anomalous sea level pressure (contours, hPa) and surface wind stress (vectors, Nm22) in August 1994 (i.e., developing

phase). (second row) Anomalous SST (contours, 8C) and precipitation (shading, mmday21) in August 1994 (i.e., de-

veloping phase). (third row) Anomalous sea level pressure (contours, hPa) and surface wind stress (vectors, Nm22) in

October 1994 (i.e., peak phase). (bottom) Anomalous SST (contours, 8C) and precipitation (shading, mmday21) in

October 1994 (i.e., peak phase). The color bar is for precipitation.
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the western Indian basin. By October (lower two rows

in Fig. 15), the structure of IOD is well developed.

The anomalous cyclone over the tropical northwest-

ern Pacific and the anomalous anticyclone over the

southeastern Indian Ocean become stronger. The SST

and precipitation both have a west–east contrasting

structure. Also, in the tropical Pacific, some positive

SSTA is present in both observations and CFSv2

hindcast, which is probably a by-product of the IOD

development.

For the 1997 event (Fig. 16), the characteristics

noted in 1994 are alsomore or less present, but they are

masked by the strong El Niño signal in the Pacific. As a

result of the Walker circulation modulation by SSTA

in the eastern Pacific, a precipitation deficit extends

from the eastern Indian Ocean through the Maritime

Continent to the western Pacific, a pattern similar to

that derived statistically (Fig. 14). Corresponding to

the precipitation deficit, anomalous easterlies are fa-

vored over the equatorial Indian Ocean, which could

trigger a positive IOD. Once initiated, IOD and ENSO

would affect each other in a constructive way (Luo

et al. 2010; Izumo et al. 2010), in addition to the de-

velopments due to their internal positive Bjerknes

feedback.

In summary, the most predictable SSTA pattern in

CFSv2 in fall is characterized by the IOD mode, which

is consistent with the dominant mode in the observed

SSTA in fall. However, the mode can generally be

predicted only 1–2 seasons ahead. The associated var-

iations in the same fall season are also generally cap-

tured by CFSv2 at the same lead time. Also, the

predictable mode statistically tends to coexist with El

Niño in the tropical Pacific, but the 1994 event that

occurred in the absence of ENSO was also well pre-

dicted at least 3 months ahead.

6. Conclusions and discussion

In this study, we explored the seasonality in the pre-

dictive skill and the most predictable pattern of the

SSTA in the tropical Indian Ocean, by analyzing the

hindcasts (1982–2009) using NCEP CFSv2. The most

predictable patterns were isolated by an empirical or-

thogonal function analysis with a maximized signal-to-

noise ratio (MSN EOF). The possible connections of

these predictable patterns with the conditions in the

tropical Pacific were also examined.

As for the overall predictive skill of SSTA in the TIO,

CFSv2 generally had useful prediction skill in the

FIG. 16. As in Fig. 15, but for the 1997 IOD event.
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tropical Indian ocean SST compared with persistence.

Also, most of the skill is contributed from predictions for

seasons other than the IOD season (i.e., the boreal au-

tumn). In another word, the skill was mostly attributed

to the TIO basin-warming mode, but is only weakly re-

lated to the IOD. The prediction skill of the IOD index

exhibited strong seasonality, with relatively high skill in

the early boreal autumn. In spite of this, CFSv2 did not

have significantly better skill in predicting IOD than

persistence.

The seasonality in the predictable patterns of the

TIO SST was explored by applying MSN EOF to the

predicted SSTA during March and October, respec-

tively. For March, the most predictable pattern was

characterized by the basinwide warming in the TIO.

The predictable mode was found to be closely associ-

ated with El Niño in the tropical Pacific. Also, the basin

warming mode in spring, including its associated vari-

ations in the preceding winter and the simultaneous

spring, can be predicted at least 9 months ahead, even

though some biases were evident. On the other hand,

the most predictable SSTA pattern in fall is charac-

terized by the IOD mode. The mode, however, was

only predicted only 1–2 seasons ahead. CFSv2 also

predicted its associated variations in the simultaneous

fall at the similar lead time. Statistically, the predict-

able mode coexisted with El Niño in the tropical Pa-

cific, but there are also cases, like the 1994 event, that

occurred in the absence of ENSO. By evaluating their

peak phase, both 1994 and 1997 IOD events seem to be

well predicted starting from as early as July (i.e., at a

3-month lead time).

We also identified some systematic model biases in

CFSv2 (Huang et al. 2007), particularly the ENSO-

related biases. For example, in CFSv2 the meridional

extent of ENSO-related SSTA was unrealistically

large in the eastern tropical Pacific, and the ENSO-

related precipitation variations were too symmetric

relative to the equator in the central tropical Pacific.

The latter was likely associated with the double-ITCZ

problem in the mean state of CFSv2. Also, the ENSO-

related SSTA in the eastern tropical Pacific persisted

too long, which might result in a stronger connection

between ENSO and the East Asian climate than in

observations. Further sensitivity experiments, similar

to those by Huang and Shukla (2007a,b), are required

to evaluate how robust the relationships described in

this paper are in CFSv2, which will be examined in

the future.
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APPENDIX

A Brief Introduction to EOF Analysis with
Maximized Signal-To-Noise Ratio (MSN EOF)

The MSN EOF employed here follows Venzke et al.

(1999) and Huang (2004). In a finite ensemble, the

ensemble mean is composed of a true forced and a

random part (i.e., XM 5 XF 1 XR; the bold letters rep-

resent matrices or vectors). The MSN EOF method

optimally estimates the dominant pattern of XF in the

presence of XR. If XF and XR are temporally un-

correlated with each other, the covariancematrix of XM

can be separated into forced and a residual noise co-

variance matrices (i.e., CM 5 CF 1 CR). To find the

eigenvectors of CF, the key procedure is to eliminate

the spatial covariance of noise, which, mathematically,

is equivalent to finding a transformation F such that

FTCRF 5 I (I is identity matrix). This procedure is re-

ferred to as a ‘‘prewhitening’’ transformation, because

the internal variations become spatial white noise by

the transformed matrix, which guarantees that FTCFF

and FTCMF have identical eigenvalues.

In practice, F is estimated from the first K weighted

EOF patterns of the deviations X
0
i 5 Xi 2 XM, where i

denotes the ithmember within the ensemble. Thematrix

of eigenvectors (E) of FTCMF contains a set of noise

filters, which can be restored into physical space by
~E5 FE. The optimal filter ~e (i.e., the first column vector

of ~E) maximizes the ratio of the variances of the en-

semble mean and within-ensemble deviations. The op-

timally filtered time series of XM (i.e., its projection onto
~e) gives the first MSN principal component (PC).
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